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A theoretical and experimental study of the fragmentation of closed thin shells made of a disordered brittle
material is presented. Experiments were performed on eggshells under two different loading conditions: frag-
mentation due to an impact with a hard wall and explosion by a combustion mixture giving rise to power law
fragment size distributions. For the theoretical investigations a three-dimensional discrete element model of
shells is constructed. Molecular dynamics simulations of the two loading cases resulted in power law fragment
mass distributions in satisfactory agreement with experiments. Based on large scale simulations we give
evidence that power law distributions arise due to an underlying phase transition which proved to be abrupt and
continuous for explosion and impact, respectively. Our results demonstrate that the fragmentation of closed
shells defines a universality class, different from that of two- and three-dimensional bulk systems.
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I. INTRODUCTION

Closed shells made of solid materials are often used in
everyday life, industrial applications, and engineering prac-
tice as containers, pressure vessels, or combustion chambers.
From a structural point of view, aircraft vehicles, launch ve-
hicles like rockets, and building blocks of a space station are
also shell-like systems, and even certain types of modern
buildings can be considered as shells. The eggshell as na-
ture’s oldest container proved to be a reliable construction
for protecting life. In most of the applications shell-like con-
structions operate under an internal pressure much higher
than the surrounding one. Hence, careful design and optimi-
zation of structural and material properties is required to en-
sure the stability and reliability of the system. Closed shells
usually fail due to an excess internal load which can arise
either as a result of slowly driving the system above its sta-
bility limit during its usage or service time, or by a pressure
pulse caused by an explosive shock inside the shell. Due to
the widespread applications, the failure of shell systems is a
very important scientific and technological problem which
also has an enormous social impact due to the human costs
arising, for instance, in accidental events.

Fragmentation, i.e. the breaking of particulate materials
into smaller pieces, is abundant in nature and underlies sev-
eral industrial processes, which have attracted continuous in-
terest in scientific and engineering research over recent de-
cadesf1–17g. Fragmentation phenomena can be observed on
a broad range of length scales ranging from the collisional
evolution of asteroids and meteor impacts on the astrophysi-
cal scale, through geological phenomena and industrial ap-
plications on the intermediate scale, down to the breakup of
large molecules and heavy nuclei on the atomic scale. In
laboratory experiments on the fragmentation of solids, the
energy input is usually achieved by shooting a projectile into

a solid blockf4–9g, making an explosion inside the sample
f2,3g, or the collision of macroscopic bodiessfree fall im-
pactd f11–17g. Due to the violent nature of the process, ob-
servations on fragmenting systems are often restricted to the
final state, making the fragment sizesvolume, mass, charge,
etc.d the main characteristic quantity. The most striking ob-
servation on fragmentation is that the distribution of frag-
ment sizes shows a power law behavior, independent of the
way of imparting energy, relevant microscopic interactions,
and length scales involved, with an exponent depending only
on the dimensionality of the systemf2–18g. During recent
years experimentalf2–18g and theoreticalf19–42g efforts fo-
cused on the validity region and the reason for the observed
universality in one, two, and three dimensions. Detailed stud-
ies have revealed that universality prevails for large enough
input energies when the system falls apart into small enough
pieces f7–10,13–17,19–28g; however, at lower energies a
systematic dependence of the exponent on the input energy
was evidencedf29,30g. Recent investigations on the low en-
ergy limit of fragmentation suggest that the power law dis-
tribution of fragment sizes arises due to an underlying criti-
cal point f22,23,28,35,36,39g.

In addition to the industrial and social impact of the fail-
ure of shell-like systems, they are also of high scientific im-
portance for the understanding of fragmentation phenomena.
Former studies on fragmentation have focused on the behav-
ior of bulk systems in one, two, and three dimensions under
impact and explosive loading; however, hardly any studies
have been devoted to fragmentation of shellsf39g. The pe-
culiarity of the breakup of closed shells originates from the
fact that the local structure is inherently two dimensional;
however, the dynamics of the system, the motion of material
elements, deformation, and stress states are three dimen-
sional, which allows for a rich variety of failure modesf39g.

In this paper we present a detailed experimental and the-
oretical study of the fragmentation of closed solid shells aris-
ing due to an excess load inside the shell. Experiments were
performed on brown and white hen eggshells and on quail
eggshells under two different loading conditions: fragmenta-*Electronic address: feri@dtp.atomki.hu
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tion due to an impact with a hard wall and explosion by a
combustion mixture have been considered, resulting in
power law fragment size distributions. For simplicity, our
theoretical study is restricted to spherical shells such that a
three-dimensional discrete element model of spherical shell
systems was worked out. In molecular dynamics simulations
of the two loading cases, power law fragment mass distribu-
tions were obtained in satisfactory agreement with experi-
ments. Based on large scale simulations we give evidence
that power law distributions arise due to an underlying phase
transition which proved to be abrupt for explosion and con-
tinuous for impact. Analyzing the energetics of the explosion
process in the two loading cases and the evolution of the
fragment mass distributions, we demonstrate that the frag-
mentation of closed shells defines a universality class differ-
ent from that of two- and three-dimensional bulk systems.

II. EXPERIMENTS

Hen eggs provide an excellent possibility for the study of
fragmentation of thin brittle shells of disordered materials
with the additional advantages of being cheap and easy to
handle, making the patience of scientists the only limiting
factor for the subsequent improvement of the experimental
results. Our experiments were performed on ordinary brown
hen eggshells. In the preparation, first two holes of regular
circular shape were drilled on the bottom and top of the egg
through which the content of the egg was blown out. The
inside was carefully washed and rinsed out several times and
finally the empty shells were dried in a microwave oven to
get rid of all moisture of the eggshell. The drying process
proved to be essential to ensure that the cuticula, which can-
not be blown out, completely loses its toughness.

In the impact experiments, intact eggshells are catapulted
onto the ground at a high speed using a simple setup of
rubber bands. The experimental setup provided a relatively
high energy impact without the possibility of varying the
imparted energy. The eggs are shot directly into a plastic bag
touching the ground so that no fragments are lost for further
evaluation.

In the explosion experiment initially the eggshell is
flooded with hydrogen and hung vertically inside a plastic
bag. The combustion reaction is initiated by igniting the es-
caping hydrogen on the top of the egg. The hydrogen imme-
diately reacts with the oxygen which is also drawn up into
the egg through the bottom hole, mixing with the remaining
hydrogen. When enough air has entered to form a combus-
tible mixture inside the egg, the flame back-fires through the
top hole and starts a very quick exothermic reaction. The
experiments are carried out inside a soft plastic bag so that
no secondary fragmentations due to fragment-wall collisions
occur; furthermore, no pieces were lost after explosion. Since
the pressure that builds up during combustion can be slightly
changed by the hole size, i.e., the smaller the hole, the higher
the pressure at the explosion, we performed several series of
experiments with hole diametersd between 1.2 and 2.5 mm.
The limit values have practical reasons: a drilling nail of
large diameter typically breaks the eggshell; on the other
hand, it is extremely difficult to blow out an egg through a
hole of diameter 1 mm or less.

It is possible to follow the time evolution of the explosion
and impact processes by means of a high speed camera under
well controlled conditions. Three consecutive snapshots of
the explosion process are presented in Fig. 1 taken by a
camera of 1000 Hz frequency. The ignition took place at the
top of the egg in Fig. 1sad. The instant of backfiring and the
initiation of combustion is captured in Fig. 1sbd, while in Fig.
1scd the flying pieces can already be seen. Based on the
snapshots, the total duration of an explosion is estimated to
be of the order of 1 ms.

In the impact experiment the egg hits the ground in the
direction of its longer axis, as is illustrated by the picture
series of Fig. 2. After hitting the groundfFig. 2sbdg, the egg
suffers gradual collapse as it moves forwardfFigs. 2scd–
2shdg, making the impact process relatively long compared to
the explosion.

The resulting eggshell pieces are then carefully collected
and placed on the tray of a scanner without overlap. In the
scanned image, fragments are seen as black spots on a white
background and were further analyzed by a cluster searching
code. In the inset of Fig. 3 an example of scanned pieces of
an impact experiment is shown where the broad variation of
sizes can also be noticed with the naked eye. A dusty phase
of shattered piecesf43g was also observed in the experiments
with fragment sizes falling in the order of the pixel size of
the scanner. The massm of fragments was determined as the
number of pixels in the scanned image. Since shattered frag-
ments were also comparable to normal dust pieces in the air,

FIG. 1. Time evolution of the explosion of an eggshell, Con-
secutive snapshots taken by a high speed camera. The time differ-
ence between the snapshots is 0.001 s.

FIG. 2. Time series of the impact of an eggshell with the hard
ground. The consecutive snapshots were taken by a high speed cam-
era of 1 kHz.
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they were excluded in the analysis by setting the lower cutoff
of fragment masses to a few pixels.

As the main quantitative result of the experiments we
evaluated the mass distribution of fragmentsFsmd which is
defined so thatFsmdDm provides the probability of finding a
fragment with mass falling betweenm andm+Dm. Figure 3
presents the fragment mass distributionsFsmd of brown eggs
for impact and explosion experiments averaged over 10–20
eggshells for each curve. For the impact experiment, a power
law behavior of the fragment mass distribution

Fsmd , m−t s1d

can be observed over three orders of magnitude where the
value of the exponent can be determined with high precision
to t=1.35±0.02. Explosion experiments also result in a
power law distribution of the same value oft for small frag-
ments with a relatively broad cutoff for the large ones. A
smaller hole diameterd in Fig. 3, i.e., higher pressure, gives
rise to a larger number of fragments with a smaller cutoff
mass and a faster decay of the distributionFsmd for the large
fragments. Comparing the number of fragments obtained, the
ratio of the pressure values in the explosions at hole diam-
etersd=1.2 and 2.0 mm, presented in Fig. 3, was estimated
to be about 1.6.

In order to investigate the effect of the material and size
of the shell on the shape of the mass distributionFsmd, we
carried out impact experiments with three different types of
eggs, i.e., besides the above experiments with brown hen
eggs, the impact experiment was repeated with white hen
eggs and quail eggs. Due to differences in their chemical
composition, white hen eggshells have different microscopic
properties from the brown ones resulting in a significantly
lower strength. Also, in addition to the different material, the
volume of quail eggshells is about one-fourth of that of the
hen eggs. Figure 4 shows that in spite of the differences of
the shells, the mass distributions of their fragments have the

same functional form. For small fragment masses the distri-
butions can be well fitted by a power law with exponents
1.35±0.02,1.32±0.03, and 1.32±0.03, for brown and white
hen eggs and quail eggs, respectively. The results of Figs. 3
and 4 demonstrate that the value of the exponentt is inde-
pendent of the size and microscopic material properties of
the shells and of the way of loading.

It is important to note that the value oft obtained for
shell systems is significantly different from the experimen-
tal and theoretical results on fragmenting two-dimensional
bulk systems where 1.5øtø2 has been found
f2,7,8,13–17,22,23,35–38g, and from three-dimensional ones
wheret.2 is obtainedf2,5,6,40,41g.

III. SIMULATIONS

Most of the theoretical studies on fragmentation relay on
large scale computer simulations since the capabilities of
analytic approaches are rather limited in this field due to the
complexity of the breakup process. Over recent years the
discrete element methodsDEMd has proven to be a very
efficient numerical technique for fragmentation phenomena
f22,23,28,35–42g since it has the ability to handle large de-
formations arising dynamically, and naturally captures the
propagation and interaction of a large number of simulta-
neously growing cracks, which is essential for fragmentation.

In order to investigate the fragmentation of spherical
shells we constructed a three-dimensional discrete element
model such that the surface of the unit sphere is discretized
into randomly shaped trianglessDelaunay triangulationd by
throwing points randomly and independently on the surface
f44,45g. Based on the triangulation, the dual Voronoi tessel-
lation of the surface is also carried out as illustrated in Fig. 5.
The nodes of the triangulation represent pointlike material
elements in the model whose mass is defined by the area of
the Voronoi polygon assigned to themf37,44,45g. The bonds
between nodes are assumed to be springs having linear elas-

FIG. 3. sColor onlined Comparison of fragment mass distribu-
tions obtained by explosion experiments with two hole sizes and the
impact experiment to the simulation results. The inset shows a typi-
cal scanned set of fragments.

FIG. 4. Comparison of fragment mass distributionsFsmd ob-
tained in impact experiments on brown and white hen eggs, and
quail eggs.
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tic behavior up to failure. Disorder is introduced in the model
solely by the randomness of the tessellation so that the mass
assigned to the nodes and the length and cross section of the
springs are determined by the tessellationsquenched struc-
tural disorderd. After prescribing the initial conditions of a
specific fragmentation process, the time evolution of the sys-
tem is followed by solving the equation of motion of nodes
by a predictor-corrector method of fourth order

mirẄi = FW i
s + FW i

ext + FW i
d, i = 1,…N, s2d

whereFW i
s is the sum of forces exerted by the springs con-

nected to nodei, andFW i
ext denotes the external driving force,

which depends on the loading condition. To facilitate the
relaxation of the system at the end of the fragmentation pro-

cess, a small viscous damping forceFW i
d was also introduced

in Eq. s2d.
In order to account for crack formation in the model,

springs are assumed to break when their deformation« ex-
ceeds a certain breaking threshold«c. A fixed threshold value
«c=0.03 is set for all the springs, resulting in a random se-
quence of breakings due to the disordered spring properties.
The breaking criterion is evaluated at each iteration step and
those springs which satisfy the condition are removed from
the simulation. As a result of successive spring breakings
cracks nucleate, grow, and merge on the spherical surface,
which can give rise to a complete breakup of the shell into
smaller pieces.

Fragments of the shell are defined in the model as sets of
nodessmaterial elementsd connected by the remaining intact

springs. The process is stopped when the system has attained
a relaxed state, i.e., when there is no spring breaking over a
large number of iteration steps. The main advantage of the
DEM is that it makes it possible to monitor a large number of
microscopic physical quantities during the course of the
simulation, which are hardly accessible experimentally, pro-
viding a deep insight into the fragmentation process. With
the present computer capacities, DEM models can be de-
signed to be realistic so that the simulation results can even
complement the experimental information, extending our un-
derstanding. The most important parameter values used in
our simulations are summarized in Table I.

In computer simulations two different ways of loading
have been considered, which model the experimental condi-
tions and represent limiting cases of energy input rates:sid
pressure pulseand sii d impact load. A pressure pulse in a
shell is introduced by imposing a fixed internal pressureP0

from which the forcesFW j
ext acting on the triangular surface

elements are calculated as

FW j
ext = P0AjnW j , s3d

whereAj denotes the actual area of trianglej and the force
points in the direction of the local normalnW j; see also Fig. 5.
The forceFj

ext is equally shared by the three nodes of the
triangle for which the equation of motion Eq.s2d is solved.
Since the surface area of the shell increases, the expansion
under constant pressure implies a continuous increase of the
driving force and of the imparted energy.

The impact loading realizes the limiting case of instanta-
neous energy input by giving a fixed initial radially oriented
velocity v0 to the material elements and following the result-
ing time evolution of the system by solving the equation of
motion Eq.s2d. The control parameter of the system which
determines the final outcome of the process are the fixed
pressureP0 and the initial kinetic energyE0 for the pressure
pulse and impact loading, respectively.

IV. THE BREAKUP PROCESS

In the simulations, in both loading cases the spherical
shell is initially completely stress-free with no energy stored

FIG. 5. Example of the Delaunay triangulation of a spherical
surface. The dual Voronoi lattice is also shown in the lower left
quadrant.

TABLE I. Parameter values used in the simulations.

Parameter Symbol Unit Value

Initial radius R m 1

Initial volume V0 m3 4.19

Initial surface A0 m2 12.56

Shell thickness th m 5Ã10−5

Total mass Mtot kg 0.816

Number of triangles Nt <44000

Number of nodes Nn <21000

Mass density r kg/m3 1300

Time step Dt s 3Ã10−7

Damping coefficient gd kg/s 0.1

Spring Young modulus Y N/m2 109
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in deformation. When a constant pressure is imposed, the
total energyEtot of the shell increases due to the work done
by the filling gas,

EtotsVd =E
V0

V

P0dV= P0DV, s4d

whereV denotes the actual volume during the expansion and
DV is the volume change with respect to the initial stateV0.
The total energy can be written as the sum of the kinetic
energy of material elementsEkin and of the elastic energyEel
stored in deformation,Etot=Ekin+Eel, where Eel is propor-
tional to the changeDA of surface areaA of the expanding
sphere with respect to the initial surfaceA0. Introducing the
relative volume changeDv=DV/V0 as an independent vari-
able, the total energy and the elastic energy can be cast in the
forms

Etot = P0V0Dv, s5d

Eel = CfsDv + 1d1/3 − 1g2, s6d

where the surface changeDA is expressed in terms ofDv.
Furthermore, the parameterC of the system depends on the
properties of the triangulation and the characteristic physical
quantities of springssYoung modulus, length, thicknessd. It is
interesting to note that a specific pressure valueP0

* exists,
below which the expansion always stops at a maximum vol-
ume changeDvmax depending onP0; however, forP0. P0

*

the expansion always keeps accelerating. For a givenP0
, P0

* the value ofDvmax can be determined from the condi-
tion Etot=Eel so that

P0V0Dvmax= CfsDvmax+ 1d1/3 − 1g2, s7d

andP0
* can be identified as the highest pressure for which Eq.

s7d can be solved forDvmax. Usually Dvmax can only be re-
alized at low pressure values, because at higher pressures the
system suffers complete breakup much belowDvmax, due to
the finite strength of the springs. Figure 6 illustrates the evo-
lution of the totalEtot, kineticEkin, and elasticEel energies as
a function ofDv for both pressure and impact loading. In the
case of pressure loading it can be observed that the total
energyEtot extracted from the simulations agrees well with
the analytic prediction of Eq.s5d. The numerical value of the
multiplication factorC of the elastic energy was obtained by
fitting the expression Eq.s6d to the curve ofEelsDvd in the
figure. Due to the constant pressure, the total forceF acting
on the shell is proportional to the actual surface areaF
,AP0 so that the system is driven by an increasing force
during the expansion process. Since the driving forceF in-
creases with a diminishing rate when approaching the limit
volume changeDvmax, it follows that the pressure loading
case is analogous to the stress controlled quasistatic loading
of bulk specimens. According to the simulations, under pres-
sure loading there exists a critical pressurePc below which
the expansion always stops at a finite volume and the shell
only suffers partial failure(damage)in the form of cracks but
keeps its integrity. When the pressure exceedsPc, however,
the system surpasses the critical volume changeDvc when a
large amount of springs abruptly break resulting in the

breakup of the system(fragmentation). Note thatPc! P0
* .

The critical volume changeDvc, where fragmentation sets
in during the expansion, can be identified by the location of
the sudden drop of the elastic energy in Fig. 6 caused by the
large amount of spring breaking which occurs in a very nar-
row Dv interval, resulting in a rapid formation of cracks on
the surface. The value ofDvc is mainly determined by the
fixed breaking threshold«c and the disordered spring prop-
erties. Since the shell is under constant pressure the nucle-
ated microcracks can grow and join giving rise to planar
pieces surrounded by a free crack surfacesfragmentd, as is
illustrated in Figs. 7scd–7sed. First large fragments are
formed which then break up into smaller pieces until the
surviving springs can sustain the remaining stress; see Figs.
7scd–7sed. For simplicity, in the simulations the pressure is
kept constant even if the system has lost its integrity, which
formally has the consequence that pieces of the shell formed
in the final state of fragmentation keep accelerating under the
action of a constant force, which explains the increasing ki-
netic energyEkin in Fig. 6 following fragmentation. The vol-
ume of the system is numerically calculated as the sum of the
volume of pyramidal objects defined by the surface elements
and the center of the sphere, which provides a meaningful
result even after breakup in Fig. 6 in the vicinity ofDvc. The
critical pressurePc, required to exceed the critical volume
changeDvc to achieve fragmentation, can be estimated as
Pc=EelsDvcd / sV0Dvcd.

When loading is imposed by an instantaneous energy in-
put E0, there is no further energy supply, and the total energy
of the system is either constant or decreases due to the vis-
cous dissipation and the breaking of springsssee Fig. 6d.
Since the elastic energyEel is solely determined by the de-

FIG. 6. The kineticEkin, elasticEel, and totalEtot energies as a
function of the relative volume changeDv. Open symbols stand for
expansion under constant pressure while the filled ones characterize
the impact loading. The sudden drop of the total and elastic energy
at Dvc indicates the rapid breakup of the system. ForEtot of the
pressure loading the thick solid line follows Eq.s5d, while for Eel

the function given by Eq.s6d was fitted with C=312 000 as a
parameter.
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formation, the curve ofEel and the critical volume change
Dvc where breakup arises in Fig. 6 coincide with the corre-
sponding values of the pressure loading. Similarly to the
pressure loading case, simulations revealed that a critical
value of the imparted energyEc can be identified below
which the shell maintains its integrity, suffering only dam-
age, while exceedingEc gives rise to a complete fragmenta-
tion of the shell. The resulting fragments on the shell surface
obtained in the fragmented regime can be seen in Figs. 7sad
and 7sbd.

V. FRAGMENT MASSES

To give a quantitative characterization of the breakup of
shells and to reveal the nature of the transition between the
damaged and fragmented states, large scale simulations have
been performed varying the control parameters, i.e., the fixed
pressureP0 and the imparted energyE0 over a broad range.
The most important characteristics of our fragmenting shell
system that can be compared to the experimental findings is
the variation of fragment masses when changing the control
parameters. In the simulations two cutoffs arise for the frag-
ment masses, where the lower one is defined by the single

unbreakable material elements of the model and the upper
one is due to the finite size of the system.

For both types of loading above the critical point the typi-
cal fragment size obtained at the instant of breakup decreases
with increasing control parameter, which can be described
analytically in terms of an energy balance argument similarly
to the one given in Ref.f27g. The loading energy of a shell
region of linear extensionL and massm,L2, i.e., the energy
stored in the motion of particles separating the piece from its
surroundings, can be written asfm/MtotgEkinsDvcdL2

=fEkinsDvcd /MtotgL4, where EkinsDvcd denotes the total ki-
netic energy of the shell at the instant of breakup andMtot is
the total mass of the shell. The separation of the piece from
its surroundings costs energy proportional to the fragment
surface,L. The equilibrium fragment size can be obtained
by minimizing the sum of the loading and surface energy
densitiesrE:

rE ,
EkinsDvcd

Mtot
L2 +

1

L
s8d

with respect toL, which results inL,Ekin
−1/3. It has been

shown in the previous section that at the critical pointPc,Ec
the total kinetic energy of the system when breakup occurs
takes zero valueEkinsDvcd=0. It follows that above the criti-
cal pointEkin has a linear dependence on the distance from
the critical point so thatEkinsDvcd,sP0−Pcd for P0. Pc,
andEkinsDvcd,sE0−Ecd for E0.Ec hold. Substituting these
results into Eq.s8d, the typical fragment mass at the instant
of breakup can be cast into the form

m, sP0 − Pcd−2/3 for P0 . Pc, s9d

m, sE0 − Ecd−2/3 for E0 . Ec. s10d

Equationss9d ands10d express that the typical fragment mass
obtained at the time of breakup decreases according to a
power law with increasing distance from the critical point.
The exponent of the power law is universal in the sense that
it does not depend on specific material properties of the shell.
Later on during the fragmentation process the elastic energy
stored in deformation may result in successive breakings of
the large fragments. Hence, it can be expected that Eqs.s9d
and s10d describe the scaling behavior of the largest frag-
ments, which did not undergo substantial size reduction until
reaching the final relaxed state.

A. Largest fragments

To characterize the degree of fragmentation, i.e., the size
reduction achieved in the simulations, we calculated the av-
erage mass of the largestkMmax/Mtotl and of the second larg-
estkMmax

2nd /Mtotl fragments normalized by the total mass as a
function of the pressureP0 and input energyE0 in the case of
pressure and impact loading, respectivelyf35,36g. The re-
sults are presented in Figs. 8 and 9. It can be seen that in
both cases the maximum fragment mass is a monotonically
decreasing function of the control parametersP0 and E0;
however, the functional forms are different in the two cases.
Low pressure values in Fig. 8 result in a breaking of springs;

FIG. 7. Cracks on the shell surface. Final states of impact ex-
periments at energiesE0/Ec<0.8 sad and 2.8sbd. Time evolution of
the cracking process under a constant pressure ofP0/Pc<4.0 scd,
sdd until the final relaxed state is reachedsed, with a magnified view
of fragmentssfd. Particle positions are projected back to their initial
states on the surface. Fragments are identified as shell pieces sur-
rounded by cracks.
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however, hardly any fragments are formed except for single
elements broken out of the shell along cracks. Hence, the
mass of the largest fragment is practically equal to the total
massMtot of the system, while the second largest fragment is
orders of magnitude smallersdamaged. However, when in-
creasing the pressure above the threshold valuePc the largest
fragment mass becomes much smaller than the total mass;
furthermore, in this regime there is only a slight difference

between the largest and second largest fragments, indicating
the complete disintegration of the shell into piecessfragmen-
tationd. The value of the critical pressurePc needed to
achieve fragmentation and the functional form of the curve
of kMmax/Mtotl above Pc was determined such that
kMmax/Mtotl was plotted as a function of the differenceuP0

−Pcu varying Pc until a straight line is obtained on a double
logarithmic plot. The result is presented in the inset of Fig. 8
where a power law dependence ofkMmax/Mtotl is evidenced
as a function of the distance from the critical point:

kMmax/Mtotl , uP0 − Pcu−a for P0 . Pc. s11d

The exponenta=0.66±0.02 was obtained in good agreement
with the analytic prediction of Eq.s9d. Detailed studies in the
vicinity of Pc revealed a finite jump of bothkMmax/Mtotl and
kMmax

2nd /Mtotl at Pc which implies that fragmentation occurs as
an abrupt transition at the critical point, see Fig. 8.

In Fig. 9 the corresponding results are presented for the
case of impact loading as a function of the total energyE0
imparted to the system initially. The mass of the largest frag-
ment is again a monotonically decreasing function of the
control parameter; however, it is continuous in the entire
energy range considered. Careful analyses revealed the exis-
tence of two regimes with a continuous transition at a critical
value of the imparted energyEc. In the inset of Fig. 9
kMmax/Mtotl is shown as a function of the distance from the
critical point uE0−Ecu where Ec was determined using the
same technique as forPc. Contrary to the pressure loading,
kMmax/Mtotl exhibits a power law behavior on both sides of
the critical point but with different exponents,

kMmax/Mtotl , uE0 − Ecub for E0 , Ec, s12d

kMmax/Mtotl , uE0 − Ecu−a for E0 . Ec. s13d

The numerical values of the exponents were obtained asa
=0.66±0.02 andb=0.5±0.02, above and below the critical
point, respectively. Note that the value ofa coincides with
the corresponding exponent of the pressure loading and is in
good agreement with the analytic prediction of Eq.s10d. Be-
low the critical point the second largest fragment is again
orders of magnitude smaller than the largest one, which im-
plies that in this energy range the shell suffers only damage
in the form of cracks, while above the critical point the
breakup of the entire shell results in comparable values of the
largest and second largest fragment masses. At the transition
point Ec between the damaged and fragmented states the
mass of the second largest fragment has a maximum, while
the curve of the largest one exhibits a curvature changessee
Fig. 9d.

B. Average fragment mass

More insight can be obtained into the fragmentation pro-
cess by studying the so-called single-event moments of frag-
ment masses

FIG. 8. Average mass of the largestkMmax/Mtotl and second
largest kMmax

2nd /Mtotl fragment normalized by the total mass as a
function of imposed pressureP0. The inset presents a log-log plot of
kMmax/Mtotl as a function of the distance from the critical point
P0−Pc. In the main figure the value ofPc is indicated by an arrow.

FIG. 9. kMmax/Mtotl and kMmax
2nd /Mtotl as a function of the im-

parted energy. The inset presents a log-log plot of the largest mass
as a function ofuE0−Ecu, where the increasing and decreasing
branches characterize the damaged and fragmented states, respec-
tively. The location ofEc is indicated in the main figure.
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Mk
j = o

m

mknjsmd − Mmax
k , s14d

whereMk
j denotes thekth moment of fragment massesm in

the j th realization of a fragmentation process, andnjsmd is
the number of fragments of massm in event j . The ratio of
the secondM2

j and the firstM1
j moments provides a measure

for the average fragment mass in a specific experimentj :

M̄ j =
M2

j

M1
j . s15d

Averaging over simulations with different realizations of dis-

order, the average fragment massM̄ =kM2
j /M1

j l was obtained
as a function of the control parameter of the system.

Due to the abrupt nature of the transition from the dam-

aged to the fragmented states at the critical pressure,M̄ can-
not be evaluated belowPc under pressure loading. However,
when P0 exceeds the critical pressurePc the average frag-
ment mass monotonically decreases in Fig. 10. The inset of

Fig. 10 showsM̄ as a function of the distance from the criti-
cal pointuP0−Pcu where the same value ofPc was used as in

Fig. 8. A power law dependence ofM̄ is evidenced as a
function of uP0−Pcu:

M̄ , uP0 − Pcu−g s16d

for P0. Pc and the value of the exponent was obtained to be

g=0.8±0.02. For impact loadingM̄ can be evaluated on both
sides of the critical point with a sharp peak in the vicinity of
Ec which is typical for continuous phase transitions in finite

systemsssee Fig. 11d. A power law dependence ofM̄ on the
distance from the critical point,

M̄ , uE0 − Ecu−g, s17d

is again revealed forE0.Ec, which is illustrated in the inset
of Fig. 11. The value of the exponent was determined by

fitting g=0.79±0.02, which practically coincides with theg
value of pressure loading.

C. Fragment mass distributions

The most important characteristic quantity of our system
which can also be compared to the experimental results is the
mass distribution of fragmentsFsmd. Under impact loading
for E0,Ec we found thatFsmd has a pronounced peak at
large fragments indicating the presence of large damaged
piecesssee Fig. 12d. Approaching the critical pointEc the
peak gradually disappears and the distribution asymptotically
becomes a power law atEc. We can observe in Fig. 12 that
above the critical point the power law remains for small frag-

FIG. 10. The average fragment mass as a function of the im-
posed pressureP0. The inset presents a log-log plot of the average
mass as a function of the distance from the critical pointP0−Pc for
pressure valuesP0. Pc. The value ofPc is the same as in Fig. 8.

FIG. 11. The average fragment masskM2/M1l as a function of
the imparted energyE0. The two regimes can be clearly distin-
guished. The location of the critical point proved to be exactly the
same as in Fig. 9. The inset shows a log-log plot of the average
mass as a function ofuE0−Ecu.

FIG. 12. Mass distribution of fragments at various energies be-
low and above the critical point.
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ments, followed by a cutoff for the large ones, which de-
creases with increasingE0.

For pressure loadingFsmd can only be evaluated above
Pc. The evolution ofFsmd with increasing pressure is pre-
sented in Fig. 13, where the mass distribution always shows
a power law behavior for small fragments with a relatively
broad cutoff for the large ones. For the purpose of compari-
son, a mass distributionFsmd obtained at an impact energy
close to the critical pointEc, and distributions at two differ-
ent pressure valuesP0 of the ratio 1.6, are plotted in Fig. 3
along with the experimental results. Excellent agreement
with the experimental and theoretical results is evidenced for
impact loading. For pressure loading, the functional form of
Fsmd has a nice qualitative agreement with the experimental
findings on the explosion of eggs; furthermore, distributions
at the same ratio of pressure values obtained by simulations
and experiments show the same tendency of evolutionssee
Fig. 3d.

Figures 14 and 15 demonstrate that by rescaling the mass

distributions above the critical point by plottingFsmdM̄d as a

function of m/M̄ an excellent data collapse is obtained with
d=1.6±0.03. The data collapse implies the validity of the
scaling form

Fsmd , m−tfsm/M̄d, s18d

typical for critical phenomena. The cutoff functionf has a

simple exponential form exps−m/M̄d for impact loadingssee
Fig. 14d, and a more complex one containing also an expo-
nential component for the pressure casessee Fig. 15d. The

average fragment massM̄ occurring in the scaling form Eq.
s18d diverges according to a power law given by Eqs.s16d
ands17d when approaching the critical point. The good qual-
ity of collapse and the functional form Eq.s18d also imply
that the exponentt of the mass distribution does not depend
on the value of the pressureP0 or the kinetic energyE0

contrary to the bulk fragmentation where an energy depen-
dence oft was reportedf29g.

The rescaled plots make possible an accurate determina-
tion of the exponent t, where t=1.35±0.03 and t
=1.55±0.03 were obtained for impact and pressure loading,
respectively. Hence, a good quantitative agreement of the
theoretical and experimental values of the exponentt is evi-
denced for the impact loading of shells; however, for the case
of pressure loading the numerically obtained exponent turned
out to be somewhat higher than in the case of exploded eggs.

VI. DISCUSSION AND OUTLOOK

We presented a detailed experimental and theoretical
study of the breakup of closed shells. For the purpose of

FIG. 13. Mass distribution of fragments at various pressure
values.

FIG. 14. Rescaled plot of the mass distributions for imparted
energies above the critical pointE0.Ec. The dashed line shows the
fitted power law with an exponentt=1.35±0.03.

FIG. 15. Rescaled plot of the mass distributions of various pres-
sure values above the critical pointP0. Pc. The dashed line indi-
cates the fitted power law with an exponentt=1.55±0.03.
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experiments brown and white hen eggshells and quail egg-
shells were carefully prepared to ensure a high degree of
brittleness of the disordered shell material. The breakup of
the shell was studied under two different loading conditions,
i.e., explosion caused by a combustible mixture and impact
with the hard ground. As the main outcome of the experi-
ments, the mass distribution of fragments proved to be a
power law in both loading cases for small fragment sizes;
however, qualitative differences were obtained in the limit of
large fragments for the shape of the cutoff. Experiments on
eggshells with different material properties and overall size
result in fragment mass distributions of the same functional
form with practically the same value of the exponentt,
which indicates the universality of shell fragmentation.

We worked out a discrete element model for the breakup
of shells which provides an insight into the dynamics of the
process by simultaneously monitoring several microscopic
quantities in the framework of molecular dynamics simula-
tions. In the simulations two ways of loading have been con-
sidered, which mimic the experimental conditions and repre-
sent limiting cases of energy input rates: during an expansion
under constant pressureP0 the shell is driven by an increas-
ing force with a continuous increase of the imparted energy,
while the impact loading realizes the instantaneous input of
the energyE0. Simulations revealed that, depending on the
value ofP0 andE0, the final outcome of the breakup process
can be classified into two states, i.e., damaged and frag-
mented, with a sharp transition between at a critical value of
the control parametersPc andEc. In the fragmented regime,
power law fragment mass distributions were obtained in sat-
isfactory agreement with the experimental findings. Analyz-
ing the behavior of the system in the vicinity of the critical
point Pc,Ec, we showed that power law distributions arise in
the breakup of shells due to an underlying phase transition
between the damaged and fragmented states, which proved
to be abrupt for explosion, and continuous for impact. The
parameters characterizing the shell in the computer simula-
tions were not fitted to any specific material. The qualitative
and quantitative agreement of the experimental and theoret-
ical results further supports the universality of the fragmen-
tation of shell systems.

Due to their unique characteristics, the breakup of shells
defines a universality class of fragmentation phenomena that
is different from that of two- and three-dimensional bulk
systems. The local geometry of shell structures is two dimen-
sional; however, their dynamics proceeds in the embedding
three-dimensional space, which allows for a rich variety of
failure modes not present in bulk solids. This effective di-
mensionality of the fragmenting system plays a crucial role
in the generation of cracks, which finally determines the ex-
ponent of the fragment mass distribution. The effect of the
embedding spatial dimension on the dynamics of fragmenta-
tion has also been recently discussed in Ref.f46g. Based on
universality, our results should be applicable to describe the
breakup of other closed shell systems composed of disor-
dered brittle materials. Explosions of shell-like fuel contain-
ers, tanks, and high pressure vessels often occur as accidental
events in industry, or in space missions, where also the ex-
plosion of complete satellites may occur, creating a high
amount of space debris orbiting Earth. For the safety design
of shell constructions and for the tracking of space debris, it
is crucial to have a comprehensive understanding of the
breakup of shells. Due to the universality of fragmentation
phenomena, our results can be used for these purposes.

In the fragmentation of bulk systems under appropriate
conditions a so-called detachment effect is observed when a
surface layer breaks off from the bulk and undergoes a sepa-
rate fragmentation processf29,37g. This effect also shows up
in the fragment mass distributions in the form of a power law
regime of small fragments of an exponent smaller than for
the large ones. Our results on shell fragmentation can also
provide a possible explanation of this kind of composite
power law of bulk fragmentationf29,37g.
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